Self-similar Solution of Fast Magnetic Reconnection: Semi-analytic Study of Inflow Region
نویسندگان
چکیده
An evolutionary process of the fast magnetic reconnection in “free space” which is free from any influence of outer circumstance has been studied semi-analytically, and a self-similarly expanding solution has been obtained. The semi-analytic solution is consistent with the results of our numerical simulations performed in our previous paper (see Nitta et al. 2001). This semi-analytic study confirms the existence of self-similar growth. On the other hand, the numerical study by time dependent computer simulation clarifies the stability of the self-similar growth with respect to any MHD mode. These results confirm the stable self-similar evolution of the fast magnetic reconnection system. Subject headings: Earth—MHD—Sun: flares—ISM: magnetic fields
منابع مشابه
Fast magnetic reconnection in free space: self-similar evolution process
We present a new model for time evolution of fast magnetic reconnection in free space, which is characterized by self-similarity. Reconnection triggered by locally enhanced resistivity assumed at the center of the current sheet can self-similarly and unlimitedly evolve until external factors affect the evolution. The possibility and stability of this type of evolution are verified by numerical ...
متن کاملThe scaling of collisionless, magnetic reconnection for large systems
Hybrid simulations with electron inertia, along with analytic scaling arguments, are presented which demonstrate that magnetic reconnection remains Alfv6nic in a collisionless system even as the macroscopic scale length of the system becomes very large. This fast reconnection is facilitated by the whistler physics present near the x-line. The reconnection rate is found to be a universal constan...
متن کاملSpacecraft Observations and Analytic Theory of Crescent-Shaped Electron Distributions in Asymmetric Magnetic Reconnection.
Supported by a kinetic simulation, we derive an exclusion energy parameter E_{X} providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side sep...
متن کاملDownward auroral currents from the reconnection Hall-region
We present a simple (stationary) mechanism capable of generating the auroral downward field-aligned electric field that is needed for accelerating the ionospheric electron component up into the magnetosphere and confining the ionospheric ions at low latitudes (as is required by observation of an ionospheric cavity in the downward auroral current region). The lifted ionospheric electrons carry t...
متن کاملČerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection.
Kinetic simulations of magnetotail reconnection have revealed electromagnetic whistlers originating near the exhaust boundary and propagating into the inflow region. The whistler production mechanism is not a linear instability, but rather is Čerenkov emission of almost parallel whistlers from localized moving clumps of charge (finite-size quasiparticles) associated with nonlinear coherent elec...
متن کامل